메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
기존의 LVQ(Learning Vector Quantization) 방법을 이용하여 물체를 분류하면 데이터의 학습이 빠르고 연산량이 적어 실시간으로 물체를 분류할 수 있는 장점이 있다. 하지만 데이터의 훈련시 output neuron의 개수를 정확히 예측할 수 없고 output neuron의 개수에 따라 물체를 분류하는 정확도가 매우 달라질 수 있다. 그러므로 본 논문에서는 output neuron의 개수를 데이터의 특성에 맞게 결정해주는 알고리즘을 제시한다. DLVQ(Dynamic Learning Vector Quantization) 알고리즘은 승자로 결정된 가중치 벡터의 부류가 샘플 데이터의 부류와 같으면 업데이트하고 다르면 새로운 가중치 벡터로 생성한다. 제한한 알고리즘의 가장 다른 부분은 미리 output neuron의 개수를 정하는 것이 아니라 훈련 과정에서 동적으로 output neuron의 개수를 생성하는 것이다. 그리고 클러터의 구분 방법을 제시하여 사람, 차, 클러터를 구분할 수 있다.

목차

요약
1. 서론
2. LVQ(Learning Vector Quantization)
3. Dynamic LVQ
4. 클러터의 분류
5. 실험결과
6. 결론 및 향후 계획
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-028-014903814