메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국지능시스템학회 한국지능시스템학회 논문지 퍼지 및 지능 시스템학회 논문지 제11권 제7호
발행연도
2001.12
수록면
675 - 679 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this paper, we present a new competitive learning algorithm called Dynamic Competitive Learning (DCL). DCL is a supervised learning method that dynamically generates output neurons and initializes automatically the weight vectors from training patterns. It introduces a new parameter called LOG (Limit of Grade) to decide whether an output neuron is created or not If the class of at least one among the LOG number of nearest output neurons is the same as the class of the present training pattern, then DCL adjusts the weight vector associated with the output neuron to learn the pattern. If the classes of all the nearest output neurons are different from the class of the training pattern, a new output neuron is created and the given training pattern is used to initialize the weight vector of the created neuron. The proposed method is significantly different from the previous competitive learning algorithms in the point that the selected neuron for learning is not limited only to the winner and the output neurons are dynamically generated during the learning process. In addition, the proposed algorithm has a small number of parameters, which are easy to be determined and applied to real-world problems. Experimental results for pattern recognition of remote sensing data and handwritten numeral data indicate the superiority of DCL in comparison to the conventional competitive learning methods.

목차

Abstract
1. Introduction
2. DCL Neural Network
3. Pattern Recognition of Remote Sensing Data
4. Handwritten Numeral Recognition
5. Conclusions
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-028-014805728