메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국콘텐츠학회 한국콘텐츠학회논문지 한국콘텐츠학회논문지 제8권 제3호
발행연도
2008.3
수록면
8 - 17 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 새로운 주요객체 자동추출 알고리즘을 제안한다. 제안된 알고리즘은 크게 2단계 과정으로 요약될 수 있다. 1단계로 객체와 배경을 분리하는 영상분할 작업을 수행한다. 우선적으로 ‘인간은 3또는 4개의 주요 색상으로 축약하여 사물을 인식 한다’는 연구 결과에 따라 K-means 알고리즘을 이용하여 3구역으로 분할하고, 분할된 영상 간 히스토그램 유사도를 계산하여 임계값 이상으로 유사하면 병합하는 과정을 수행 한다. 2단계로 영상구도에 근거해 분할된 영상 중에 객체라고 지정하는 작업을 수행한다. 사람이 사진을 잘 찍기 위해서는 ‘주요객체의 위치를 영상구도에 맞추어 촬영하는 것이 바람직하다는 사실’에 근거하여 삼각구도를 바탕으로 가중치 마스크를 설계하여 객체위치를 역 추정하였다. 제안된 방법의 우수성을 보이기 위해 약 400개의 영상에 대해 실험하였으며, 최근에 발표된 KMCC, GBIS방법과도 비교하였다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 영상분할
Ⅲ. 객체인식
Ⅳ. 실험 및 분석
Ⅴ. 결론
Acknowledgement
참고문헌
저자소개

참고문헌 (17)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2010-004-001421680