메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 한국인의 대표질환 중 하나인 만성 간염에 대한 질환 감수성을 예측하기 위해서 Single Nucleotide Polymorphism 데이타와 대표적인 기계학습 기술인 Support Vector Machine을 이용하였다. 실험을 위한 데이타로 만성간염 환자 173명과 정상인 155명의 SNP 데이타를 사용하였으며, 평가를 위한 방법으로는 Leave-One-Out Cross Valication을 사용하였다. 실험결과 SNP 데이타만으로는 67.1%의 예측 결과를 얻었으며 기본적인 건강요소인 나이와 성별을 특징요소로 사용함으로서 74.9%의 예측 결과를 보였다. 향후 보다 많은 SNP 데이타와 건강관련정보 그리고 생활패턴에 대한 요소들을 특징요소로 감수성 예측에 함께 사용한다면, SVM은 만성 간염 예측을 위한 보다 효과적인 도구가 될 것이다.

목차

요약
Abstract
1. 서론
2. 배경연구
3. 실험 및 결과
4. 결론 및 향후 연구
참고문헌

참고문헌 (8)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-016940408