메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국콘텐츠학회 한국콘텐츠학회논문지 한국콘텐츠학회논문지 제7권 제2호
발행연도
2007.2
수록면
109 - 116 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
칼라 식별에 대한 칼라 왜곡 영향을 줄이려면 각 칼라 영역에서 가능한 한 많은 화소를 통계적으로 처리하는 게 바람직하다. 여기에는 영역 분할이 필요하며, 따라서 일반적으로 에지 검출이 필요하다. 그러나, 칼라 코드의 에지들은 암전류, 색 간섭, 지퍼 효과, 반사, 그늘 등의 수많은 왜곡에 의해 끊기기 때문에 흔히 영역 분할이 불완전하게 되며, 그에 대한 에지 연결 작업도 쉽지가 않다. 이 논문에서는 에지 검출로 영역 분할을 할 수 없는 영상들에 대해 k-평균 클러스터링을 수행한다. 서로 다른 카메라로 서로 다른 환경에서 촬영된 311개의 영상에 대해 실험을 수행하였다. 일차 및 이차 칼라들 중에서 랜덤하게 선택해서 각 칼라 코드 영역에 사용하였다. 두 가지 에지 검출기들에 의한 영역 분할률은 89.4%였으며, 제안된 방법은 이를 99.4%로 증가시켰다. 칼라 인식은 hue, a*, b*의 세 성분들에 기반해서 수행되었으며, 성공적영역 분할 경우들에 대해 100%의 정확도를 보였다.

목차

요약
Abstract
Ⅰ. Introduction
Ⅱ. Detection, Segmentation and Recognition of Color Codes
Ⅲ. Discussion
Ⅳ. Conclusion
Reference
저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-004-016525725