메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
은성종 (가천대학교) 황보택근 (가천대학교)
저널정보
한국콘텐츠학회 한국콘텐츠학회논문지 한국콘텐츠학회논문지 제12권 제12호
발행연도
2012.12
수록면
63 - 70 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
의료 영상처리 분야에서의 일반적인 객체 인식 방법은 영역 분할 알고리즘을 기반으로 처리되어진다. 컴퓨팅 분야에서의 이러한 영역 분할 알고리즘은 대부분 밝기 정보, 형태 정보, 패턴 분석 등 다양한 입력정보의 컴퓨팅 처리를 통해 처리된다. 그러나 이러한 컴퓨팅 방법으로는 앞서 언급된 입력 정보들이 의미가 없을 경우, 영역 분할에 많은 제약이 따르게 된다. 따라서 본 논문은 이러한 컴퓨팅 처리의 근본적인 제약사항을 해결하고자, MR 이론의 R2-map 정보 기반의 효과적인 영역 분할 방법은 제안하였다. 본 방법은 간영역이 포함된 영상에서 실험하였으며, R2-map의 특징점들을 2차원 영역성장법의 씨앗점으로 설정한 후, 검출된 영역의 최종 경계선 보정작업을 통해 경계가 모호하더라도 영역 분할이 가능하게끔 하였다. 해당 영상의 실험 결과, 평균 7.5%의 평균 영역 차이로 기존의 대표 영역 분할 알고리즘에 비해 높은 정확도가 산출되었다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 본론
Ⅲ. 실험
Ⅳ. 결론
참고문헌

참고문헌 (20)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-004-000578704