메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국콘텐츠학회 한국콘텐츠학회논문지 한국콘텐츠학회논문지 제9권 제1호
발행연도
2009.1
수록면
106 - 114 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서 K-Means 군집화 알고리즘을 빠르게 적용하는 방법을 제안했다. 제안하는 알고리즘의 특징은 속도 향상을 위해 변화될 가능성이 있는 데이터를 예측하는 것이다. 군집화 알고리즘의 각 단계에서 군집이 변경될 가능성이 있는 데이터만 선택하여 군집 중심과의 거리를 계산함으로써 전체 군집 계산 시간을 줄일 수 있었다. 군집이 변화될 예측 데이터를 계산할 때는 K-Means 알고리즘을 적용하면서 생성되는 거리 정보를 사용함으로써 추가되는 계산 시간이 적고, 특히, 거리 정보를 이용하기 때문에 차원의 개수에는 영향을 덜 받는 알고리즘을 제안할 수 있었다. 제안하는 알고리즘의 성능 비교를 위해서 원래의 K-Means인 Lloyd's와 이를 개선한 KMHybrid와 비교했다. 제안하는 알고리즘은 대용량 데이터(입력데이터의 크기가 크고, 데이터의 차원이 크며, 군집의 개수가 많은 경우)의 경우에 Lloyd's와 KMHybrid보다 높은 속도 향상을 보였다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. Preliminaries
Ⅲ. 제안하는 방법
Ⅳ. 실험 결과
Ⅴ. 결론
참고문헌
저자소개

참고문헌 (27)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2010-004-001716699