메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한국토·도시계획학회 국토계획 國土計劃 第36卷 第3號
발행연도
2001.6
수록면
41 - 54 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The purposes of this study are to analyze the greenery reduction of Seoul between 1985 and 2000 using satellite imagery and GIS, and to identify the influences of zoning and spatial factors on the greenery reduction. Landsat TM and ETM+ images of Seoul in the years of 1985, 1988, 1992, 1996 and 2000 were classified into three categories: built-up area, green area and water. Greenery reduction in each of the periods, 85~88, 88~92, 92~96, and 96~2000 were identified, and the influences of the six factors(population, road, subway, distance to the developed area, elevation and slope) were examined through a logistic regression analysis. The models yielded considerably high likelihood ratio(ρ2 0.30~0.74). The accuracy of the model was examined by comparing the observed and predicted probabilities of greenery reduction in each period, and the overall accuracy of the model was proved to be 82.3~96.8%. According to the model, topography(slope) in Residential zoning area and accessibility(subway) in Openspace & Agricultural zoning area had the strongest influences in the recent years. Finally, the future tendencies of greenery reduction in Jang-Gi and Ma-Gok districts were predicted by the model. The results revealed that up-zoning of the districts from Openspace & Agricultural to Residential zoning can accelerate the urban sprawl pace 3 to 6 times. The case study demonstrated that the model can significantly aid the decision making process of rezoning and the expected adjustment of Greenbelt district of Seoul metropolitan area, by providing essential information about the influence of the planning decisions to greenery reduction.

목차

Abstract
Ⅰ. 서론
Ⅱ. 연구의 방법 및 과정
Ⅲ. 모형의 구축 및 적용
Ⅳ. 결론
인용문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-539-017491082