메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper presents a maneuvering target model with the maneuver dynamics modeled as a jump process of Poisson-type. The jump process represents the deterministic maneuver(or pilot commands) and is described by a stochastic differential equation driven by a Poisson process taking values from a set of discrete states. Employing the new maneuver model along with the noisy observations described by linear difference equations, the author has developed a new linear, recursive, unbiased minimum variance filter, which is structurally simple, computationally efficient, and hence real-time implementable. Furthermore, the proposed filter does not involve a computationally burdensome technique to compute the filter gains and corresponding covariance matrices and still be able to track effectively a fast maneuvering target. The performance of the proposed filter is assessed through the numerical results generated from the Monte-Carlo simulation.

목차

Abstract

Ⅰ. Introduction

Ⅱ. System Model

Ⅲ. The Minimum Variance Filter

Ⅳ. The Monte Carlo Simulation

Ⅴ. Conclusions

References

저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017766108