메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김준환 (서울시립대학교) 양민호 (국립부경대학교) 최민경 (국립부경대학교) 김경남 (국립부경대학교)
저널정보
동북아시아문화학회 동북아 문화연구 동북아 문화연구 제82집
발행연도
2025.3
수록면
83 - 102 (20page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This study analyzes academic research trends related to Multicultural Literacy (ML) using topic modeling techniques. In the context of rapid globalization and multicultural changes, ML has emerged as a key competency for enhancing social integration and industrial productivity. The study emphasizes the importance of ML by analyzing 533 domestic academic papers published between 2002 and 2024. It employs text mining techniques such as TF analysis, Word2Vec, and BERTopic to extract key keywords and identify five core topics. The first topic concerns learning strategies centered on culture, Korean language education, and the use of literary narratives. The second topic highlights global citizenship education, emphasizing multicultural values and world citizenship awareness. The third explores the convergence of media and education, while the fourth proposes educational methodologies utilizing film media. The fifth topic addresses social media and digital writing strategies in the digital age.
The results show that ML plays a central role in cultural exchange and serves as an educational tool in the context of the development of digital technologies and media environments. The analyzed data connect academic discussions of ML with practical applications, highlighting the need for social integration and global citizenship education. In particular, digital literacy and convergent approaches expand the practical application possibilities in multicultural societies. This study identifies academic trends in ML research and provides future research directions and policy recommendations based on these trends. It suggests that future research should utilize diverse data sources and combine both quantitative and qualitative analysis to further explore the understanding and practical applications of ML.

목차

Ⅰ. 서론
Ⅱ. 관련 연구
Ⅲ. 연구 방법
Ⅳ. 분석 결과
Ⅴ. 결론
참고문헌
논문초록

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0