메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Sang-Hoon Oh (Mokwon University)
저널정보
한국콘텐츠학회(IJOC) International JOURNAL OF CONTENTS International JOURNAL OF CONTENTS Vol.21 No.1
발행연도
2025.3
수록면
147 - 154 (8page)
DOI
10.5392/IJoC.2025.21.1.147

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The EBP (Error Back-Propagation) Algorithm was initially proposed for training MLP’s (Multi- Layer Perceptrons) and is now widely used for training deep neural networks. This supervised learning algorithm minimizes the error function between the actual output values of MLP’s and their desired values.
However, ICA (Independent Component Analysis) is an unsupervised learning algorithm that aims to maximize the independence among the outputs of neural networks. ICA has been shown to realize visual features in the V1 layer of the human brain by learning from natural scenes and cochlear features of the human ear by learning from auditory signals. In this paper, we propose merging the supervised EBP algorithm with the unsupervised ICA algorithm to enhance the performance of neural networks by training independent features in the initial learning stage. This approach mirrors the feature-learning process observed in mammals during the early stages of life. Furthermore, the proposed approach is verified through simulations on isolated-word recognition tasks, achieving improved classification performance with faster learning convergence. In detail, when the number of hidden nodes is 100, EBP with ICA reaches a misclassification ratio of 2.78% on the test data at 160 epochs, while EBP achieves 3.28% at 300 epochs.

목차

Abstract
1. Introduction
2. Integration of Error Back-Propagation and Independent Component Analysis Algorithms
3. Simulations
4. Conclusions
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0