메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Saadet Gokce Gok (Kirklareli University) Ozkan Sengul (Istanbul Technical University)
저널정보
한국콘크리트학회 International Journal of Concrete Structures and Materials International Journal of Concrete Structures and Materials Vol.19 No.2
발행연도
2025.3
수록면
307 - 320 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper presents the outcomes of a study in which continuous steel fibers, recovered from scrap tires of vehicles, were used to prepare alkali-activated slag-based slurry infiltrated fibrous concrete (SIFCON). In this experimental study, the steel fibers used were 250 mm long, with varying fiber contents of 0%, 1%, 2%, 3%, 4%, and 5%. The alkali-activated SIFCONs were produced by activating ground granulated blast furnace slag (GGBS) with a mixture of sodium hydroxide (NaOH) and sodium silicate (Na₂SiO₃) solutions. Mixtures with ordinary Portland cement (OPC) were also cast for comparison purposes. The feasibility of utilizing finely ground waste glass as a silicate source for chemical activator solution in alkali-activated SIFCONs was also investigated. In this context, two different molar concentrations of NaOH, namely 8 M and 14 M, were employed during production. As activators, one series of mixtures utilized sodium hydroxide and sodium silicate solutions, while the other series replaced sodium silicate with finely ground waste glass. As a result, three different waste materials were utilized in concrete. 30 different mixtures were cast and examined in the experimental study. Load–deflection curves were obtained in three-point bending test and mechanical properties of the mixtures such as compressive, splitting and flexural strengths, fracture energy, and toughness were determined. The flexural strength and toughness increased with the use of waste steel fibers. The continuous waste fibers derived from discarded tires yielded results comparable to commercially available fibers, demonstrating their effectiveness in enhancing mechanical properties. Depending on mix design, the alkali-activated SIFCON attained flexural strength exceeding 75 MPa and compressive strength surpassing 100 MPa. These results suggest that concretes incorporating a variety of waste materials can be effectively combined. This innovative approach bridges an existing gap in the literature by combining alkali activation, waste glass, and waste steel fibers, ultimately yielding a sustainable composite that outperforms normal concretes in terms of mechanical properties while promoting environmental sustainability. Test results demonstrate that it is possible to obtain concrete with comparable mechanical properties while primarily composed of by-products and waste materials. This approach marks a substantial step in achieving high-performance concrete that relies solely on waste or by-products.

Highlights
• For sustainable production, continuous steel fibers that were obtained from worn out tires were used in various amounts in order to prepare alkali-activated ground granulated blast furnace slag based SIFCON.
• The usability and feasibility of ground waste glass as a potential silicate source in chemical activator solution were also investigated.
• Higher amounts of waste fibers recovered from scrap tires increased both flexural strength and fracture energy.
• The alkali-activated SIFCON attained flexural strength surpassing 75 MPa and compressive strength exceeding 100 MPa.
• Results confirmed that continuous waste steel fibers obtained from end-of-life scrap tires can effectively be used in high-strength SIFCONs and can be successfully utilized in alkali-activated SIFCONs.

〈Graphical Abstract 본문참조〉

목차

Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-25-02-092497730