메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Tae-su Wang (Dong-eui University) Jongwook Jang (Dong-eui University)
저널정보
한국정보통신학회 INTERNATIONAL CONFERENCE ON FUTURE INFORMATION & COMMUNICATION ENGINEERING 2023 INTERNATIONAL CONFERENCE ON FUTURE INFORMATION & COMMUNICATION ENGINEERING Vo.14 No.1
발행연도
2023.1
수록면
339 - 343 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
A Traffic signal usually stands at the center of the road and refers to a signal used to organize traffic. Traffic signals play an important role in the road as they are signals with legal effect equivalent to actual traffic lights. As such, it is important to find traffic signers, and the hands of traffic signers should be visible enough to wear white gloves. In addition, the hand shape should be accurately recognized because the reception signal varies depending on the movement and hand shape. In this paper, yolov5, a real-time object recognition algorithm, was used in consideration of the complex environment of transportation. We compare the traffic signal recognition performance of a model that learns body and hand skeleton image data generated by point extraction using mediapipe and a model that learns general traffic signal image data, and present a suitable method for traffic signal recognition systems in complex environments.

목차

Abstract
Ⅰ. INTRODUCTION
Ⅱ. RELATED RESEARCH
Ⅲ. Dataset training performance comparison
Ⅳ. CONCLUSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0