메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Jiali PENG (Henan Finance University) Xinyu CHANG (Zhejiang Gongshang University) Han ZHANG (Kangwon National University) Aocheng WU (Hebei University of Economics and Business)
저널정보
한국유통과학회 산경연구논집 The Journal of Industrial Distribution & Business Vol.15 No.7
발행연도
2024.7
수록면
1 - 9 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Purpose: This research adopts the SERVQUAL and LSQ frameworks to examine the correlation between return reverse logistics service quality of the JD platform and customer satisfaction, as well as the linkage between consumer satisfaction and repurchase intention. Research design, data and methodology: A comprehensive literature review on both domestic and international logistics service quality has been conducted. Considering the unique aspects of JD's return reverse logistics services, an evaluation framework with 5 dimensions and 21 indicators is formulated, including communication, information, return process, empathy, and convenience. A conceptual model exploring the influence of JD's reverse logistics service quality on customer repurchase intention is developed, proposing six hypotheses. For this investigation, 358 valid questionnaires were collected, processed, and analyzed using SPSS 22.0. The structural equation modeling was conducted and validated through AMOS 21.0 software. Results: Following a thorough analysis of data,it reveals that: (1) Information quality, return process quality, and empathy significantly enhance customer satisfaction. (2) Customer satisfaction positively impacts repurchase intention. Conclusion:Based on these findings, three strategic recommendations are offered for e-commerce platforms with in-house logistics systems. The research also discusses limitations and future research directions.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0