메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
강수현 (국립금오공과대학교) 권유진 (국립금오공과대학교) 이헌철 (국립금오공과대학교)
저널정보
대한임베디드공학회 대한임베디드공학회논문지 대한임베디드공학회논문지 제19권 제4호
발행연도
2024.8
수록면
175 - 184 (10page)
DOI
10.14372/IEMEK.2024.19.4.175

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This research addresses the problem of robot localization in corridor environments using LiDAR (Light Detection and Ranging). Due to the rank deficiency problem in scan matching with LiDAR alone, the accuracy of robot localization may degenerate seriously. This paper proposes an adaptive sampling-based particle filtering method using depth sensors to overcome the rank deficiency problem. The increase in the sample size in particle filters can be considered to solve the problem. But, it may cause much computation cost. In the proposed method, the sample size of the particle set in the proposed method is adjusted adaptively to the confidence of depth sensor data. The performance of the proposed method was test by real experiments in various environments. The experimental results showed that the proposed method was capable of reducing the estimation errors and more accurate than the conventional method.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0