메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
윤형구 (대전대학교)
저널정보
한국지반공학회 한국지반공학회논문집 한국지반공학회논문집 제40권 제4호
발행연도
2024.8
수록면
137 - 144 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
해당 논문의 목적은 균열밀도 산정 시 독립변수로 설정한 값이 얼마나 중요하게 작용하는지를 기계학습 기반의 알고리즘으로 분석하는 것이다. 논문에서 사용한 알고리즘은 random forest와 SHAP이며, 독립변수는 압축파 속도, 전단파속도, 간극률 그리고 포아송 비로 결정하였다. 암석 시료는 건설현장에서 채취하였으며, 원기둥 형태로 가공하여 각입력 물성치의 획득이 용이하게 고려하였다. 다수의 특징이 포함된 독립 및 종속 변수 값을 얻고자 인위적인 풍화를 진행하였으며, 총 12회 진행하였다. 2가지 알고리즘 적용 결과 간극률이 균열밀도 산정시 매우 중요한 독립변수로 나타났으며, 전단파 속도가 상대적으로 낮은 영향을 미치는 인자로 나타났다. 이와 같은 결과는 독립변수로 설정한 4개의 물성치로 충분히 균열밀도를 추정할 수 있음을 시사하며 random forest 및 SHAP과 같은 알고리즘을 통해 설정된 독립변수가 적절하게 구성되었는지 확인할 수 있는 방법론도 제시하였다.

목차

Abstract
요지
1. 서론
2. 배경이론
3. 실내실험
4. 결과
5. 토론
6. 결론
참고문헌 (References)

참고문헌 (15)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-090656469