메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
신한솔 (성균관대학교) 박철수 (성균관대학교)
저널정보
대한건축학회 대한건축학회 논문집 - 구조계 大韓建築學會論文集 構造系 第33卷 第9號 (通卷 第347號)
발행연도
2017.9
수록면
67 - 74 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
It has been widely acknowledged that a machine learning model can be used as a surrogate to a first-principle based dynamic simulation model. The accuracy and computation efficiency of a machine learning model is dependent on a combination of input variables. The random forest algorithm, one of the machine learning algorithms, can calculate a variable importance that determines the influence of each input variable on the output of the model. In this study, the authors developed three random forest models of a chiller in an existing building as follows: (1) Model A consisting of 12 measured variables from BEMS data, (2) Model B consisting of 2 measured input variables plus 4 new variables constructed by random selection, and (3) Model C consisting of 4 measured input variables plus 2 new variables constructed based on a physics-based equation. The CVRMSE of the three models are 8.56%, 5.44%, and 4.28%, respectively. The findings of this study can be summarized threefold: (1) all three random forest models are good enough to describe the dynamics of the chiller system, (2) the random forest machine learning algorithm can be used to develop a simulation model of the system, and (3) an accurate model can be constructed either by the random selection or the physics-based equation, even when a few input variables are given.

목차

Abstract
1. 서론
2. 랜덤 포레스트 알고리즘과 데이터 전처리
3. 대상 건물과 냉동기
4. 냉동기 모델 작성
5. 검증 및 결과 비교
6. 결론
REFERENCES

참고문헌 (28)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0