메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Yiru Wang (Marketing School of Busines, State University of New York at Oswego, Oswego, NY, USA) César Zamudio (Marketing, School of Business Administration, Virginia Commonwealth University, Richmond, VA, USA) Hua Meng (Marketing College of Business and Economics, Longwood University, Farmville, VA, USA) Robert D. Jewell (Marketing and Entrepreneurship, College of Business Administration, Kent State University, Kent, OH, USA)
저널정보
한국마케팅과학회 Journal of Global Scholars of Marketing Science(마케팅과학연구) 全球营销科学学报 Vol.34 No.2
발행연도
2024.3
수록면
143 - 162 (20page)
DOI
10.1080/21639159.2023.2255873

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Because online reviews facilitate consumers’ purchase decisions, prior research investigates factors impacting review helpfulness. By integrating Kuhlthau’s information search process model and the heuristicsystematic model, we propose that a situational factor – product quality uncertainty – shapes consumers’ information search processes and suggests which reviews are most helpful. The literature suggests that review length and information richness positively impact review helpfulness. However, their joint effect conditional on product quality uncertainty is unknown. An experiment reveals that consumers are motivated to process individual reviews only when uncertainty is high (i.e. when consumers disagree on product quality). Analysis of over 37,000 online reviews indicates that, under high uncertainty, short reviews with rich information are most helpful. Consistent with the experiment results, neither factor drives helpfulness when uncertainty is low (i.e. when previous consumers exhibit a consensus on product quality).We present managerial implications for stimulating “short and sweet” reviews to increase review helpfulness.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0