메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
황지연 (한국외국어대학교) 이미령 (한국외국어대학교) 원다인 (한국외국어대학교)
저널정보
한국외국어대학교 통번역연구소 통번역학연구 통번역학연구 제28권 제1호
발행연도
2024.2
수록면
177 - 207 (31page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This study is a comparative analysis of translated-text error-rates in song lyrics by K-Pop group New Jeans. Seven non-official machine translations (MTs) of ten songs were analyzed against official human-translated lyrics. The ten songs were consisted of a total 235 segments and the seven MTs were categorized under neural-network types (DeepL, Papago, Google Translate) and generative-AI types (ChatGPT, Bard, ClovaX, MS Bing Translate). Analysis discovered three salient points. First, neural-network types presented significantly higher error rates than generative-AI types. DeepL (66%), Papago (64%), Google Translate (59%). The most common errors were semantic and grammatical. A common feature of the errors was the poor contextual understanding and consistency between consecutive segments. This suggests that neural network MTs may have limited application for translating K-pop lyrics, which are expressive text. Second, neural network MTs were twice as erroneous as generative AI translations, with the official human translation as the baseline. This suggests that AI translation may be more useful for translating K-pop lyrics than neural network MT in terms of semantic accuracy and structural form. Third, generative AI translation quality improved in general when additional parameters and descriptions were provided via the services’ chat functions.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0