메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
In-Gyum Kim (National Institute of Meteorological Sciences) Seung-Wook Lee (National Institute of Meteorological Sciences) Hye-Min Kim (National Institute of Meteorological Sciences) Dae-Geun Lee (National Institute of Meteorological Sciences) Byunghwan Lim (National Institute of Meteorological Sciences)
저널정보
한국콘텐츠학회(IJOC) International JOURNAL OF CONTENTS International JOURNAL OF CONTENTS Vol.15 No.4
발행연도
2019.12
수록면
65 - 73 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Social media is a massive dataset in which individuals’ thoughts are freely recorded. So there have been a variety of efforts to analyze it and to understand the social phenomenon. In this study, Twitter was used to define the moments when negative perceptions of the Korean Meteorological Administration (KMA) were displayed and the reasons people were dissatisfied with the KMA. Machine learning methods were used for sentiment analysis to automatically train the implied awareness on Twitter which mentioned the KMA July-October 2011-2014. The trained models were used to validate sentiments on Twitter 2015–2016, and the frequency of negative sentiments was compared with the satisfaction of forecast users. It was found that the frequency of the negative sentiments increased before satisfaction decreased sharply. And the tweet keywords and the news headlines were qualitatively compared to analyze the cause of negative sentiments. As a result, it was revealed that the individual caused the increase in the monthly negative sentiments increase in 2016. This study represents the value of sentiment analysis that can complement user satisfaction surveys. Also, combining Twitter and news headlines provided the idea of analyzing the causes of dissatisfaction that are difficult to identify with only satisfaction surveys. The results contribute to improving user satisfaction with weather services by efficiently managing changes in satisfaction.

목차

ABSTRACT
1. INTRODUCTION
2. MATERIALS AND METHODOLOGIES
3. RESULTS
4. CONCLUSIONS
REFERENCES

참고문헌 (33)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-090375781