메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Qionglin Shi (Huazhong University of Science and Technology) Haomiao Li (Huazhong University of Science and Technology) Kangli Wang (Huazhong University of Science and Technology) Kai Jiang (Huazhong University of Science and Technology)
저널정보
전력전자학회 ICPE(ISPE)논문집 ICPE 2023-ECCE Asia
발행연도
2023.5
수록면
3,102 - 3,107 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The liquid metal battery is a new energy storage technology that is gaining increasing attention due to its high safety and long life. Accurate capacity estimation is crucial for health diagnosis and pack management, providing a strong guarantee of long-term stable operation for energy systems. However, owing to the lack of aging analysis traditional methods are difficult to improve the precision in the situation of unpredictable disturbances or fluctuations, such as capacity plunge. This paper proposes a capacity estimation method based on aging features by combining machine learning and filter algorithms, this method can provide an accurate prediction even the LMB is subject to capacity plunge. First, the aging features are extracted using only a tenth of the whole information from the discharge curve and increment capacity (IC) curve. Next, the Long Short Term Memory (LSTM) network is employed to establish the state-space representation between the aging feature and the capacity. The particle filter (PF) is then combined with the state-space representation to predict the capacity. Finally, aging tests are conducted to validate the precision and effectiveness of the proposed hybrid method. These results show that the proposed method can provide robustness as well as accurate capacity prediction.

목차

Abstract
I. INTRODUCTION
II. EXTRACTION OF AGING FEATURES
III. CAPACITY PREDICTION METHOD FRAMEWORK
IV. RESULTS AND DISCUSSION
V. CONCLUSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0