메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Yapeng Zhou (Wuhan University of Technology) Miaohua Huang (Wuhan University of Technology)
저널정보
대한전기학회 Journal of Electrical Engineering & Technology Journal of Electrical Engineering & Technology Vol.13 No.2
발행연도
2018.3
수록면
733 - 741 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Capacity estimation is indispensable to ensure the safety and reliability of lithium-ion batteries in electric vehicles (EVs). Therefore it"s quite necessary to develop an effective on-board capacity estimation technique. Based on experiment, it’s found constant current charge time (CCCT) and the capacity have a strong linear correlation when the capacity is more than 80% of its rated value, during which the battery is considered healthy. Thus this paper employs CCCT as the health indicator for on-board capacity estimation by means of relevance vector machine (RVM). As the ambient temperature (AT) dramatically influences the capacity fading, it is added to RVM input to improve the estimation accuracy. The estimations are compared with that via back-propagation neural network (BPNN). The experiments demonstrate that CCCT with AT is highly qualified for on-board capacity estimation of lithium-ion batteries via RVM as the results are more precise and reliable than that calculated by BPNN.

목차

Abstract
1. Introduction
2. Relevance Vector Machine
3. Feature Extraction
4. Capacity Estimation
5. Conclusion
References

참고문헌 (43)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0