메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
KUNMIN SUNG (SEOUL NATIONAL UNIVERSITY) YOUNGSOO HA (SEOUL NATIONAL UNIVERSITY) MYUNGJOO KANG (SEOUL NATIONAL UNIVERSITY)
저널정보
한국산업응용수학회 JOURNAL OF THE KOREAN SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS Journal of the Korean Society for Industrial and Applied Mathematics Vol.27 No.4
발행연도
2023.12
수록면
207 - 231 (25page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper aims to improve the alternative formulation of the fifth- and sixth-order accurate weighted essentially non-oscillatory (AWENO) finite difference schemes. The first is to derive the AWENO scheme with sixth-order accuracy in the smooth region of the solution. Second, a new weighted polynomial functions combining the perturbed forms with conserved variable to the AWENO is constructed; the new form of tunable functions are invented to maintain non-oscillatory property. Detailed numerical experiments are presented to illustrate the behavior of the new perturbational AWENO schemes. The performance of the present scheme is evaluated in terms of accuracy and resolution of discontinuities using a variety of one and two-dimensional test cases. We show that the resulted perturbational AWENO schemes can achieve fifth- and sixth-order accuracy in smooth regions while reducing numerical dissipation significantly near singularities.

목차

ABSTRACT
1. INTRODUCTION
2. AWENO schemes
3. THE PERTURBATIONAL WENO INTERPOLATIONS
4. NUMERICAL RESULTS
5. CONCLUSION
6. APPENDIX
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-089243107