메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한수학회 대한수학회논문집 대한수학회논문집 제31권 제2호
발행연도
2016.1
수록면
395 - 414 (20page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In this work, we study on subdivision schemes reproducing polynomials and build a symmetric subdivision scheme reproducing polynomials of a certain predetermined degree, which is a slight variant of the family of Deslauries-Dubic interpolatory ones. Related to polynomial reproduction, a necessary and sufficient condition for a subdivision scheme to reproduce polynomials of degree $L$ was recently established under the assumption of non-singularity of subdivision schemes. In case of stepwise polynomial reproduction, we give a characterization for a subdivision scheme to reproduce stepwise all polynomials of degree $\le L$ without the assumption of non-singularity. This characterization shows that we can investigate the polynomial reproduction property only by checking the odd and even masks of the subdivision scheme. The minimal-support condition being relaxed, we present explicitly a general formula for the mask of $(2n+4)$-point symmetric subdivision scheme with two parameters that reproduces all polynomials of degree $\le 2n+1$. The uniqueness of such a symmetric subdivision scheme is proved, provided the two parameters are given arbitrarily. By varying the values of the parameters, this scheme is shown to become various other well known subdivision schemes, ranging from interpolatory to approximating.

목차

등록된 정보가 없습니다.

참고문헌 (24)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0