메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
임이지 (숭실대학교) 최대선 (숭실대학교)
저널정보
한국정보보호학회 정보보호학회논문지 정보보호학회논문지 제33권 제6호
발행연도
2023.12
수록면
1,099 - 1,110 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
자율주행 및 robot navigation의 인식 시스템은 성능 향상을 위해 다중 센서를 융합(Multi-Sensor Fusion)을 한 후, 객체 인식 및 추적, 차선 감지 등의 비전 작업을 한다. 현재 카메라와 라이다 센서의 융합을 기반으로 한 딥러닝 모델에 대한 연구가 활발히 이루어지고 있다. 그러나 딥러닝 모델은 입력 데이터의 변조를 통한 적대적 공격에 취약하다. 기존의 다중 센서 기반 자율주행 인식 시스템에 대한 공격은 객체 인식 모델의 신뢰 점수를 낮춰 장애물 오검출을 유도하는 데에 초점이 맞춰져 있다. 그러나 타겟 모델에만 공격이 가능하다는 한계가 있다. 센서 융합단계에 대한 공격의 경우 융합 이후의 비전 작업에 대한 오류를 연쇄적으로 유발할 수 있으며, 이러한 위험성에 대한 고려가 필요하다. 또한 시각적으로 판단하기 어려운 라이다의 포인트 클라우드 데이터에 대한 공격을 진행하여 공격 여부를 판단하기 어렵도록 한다. 본 연구에서는 이미지 스케일링 기반 카메라-라이다 융합 모델(camera-LiDAR calibration model)인 LCCNet 의 정확도를 저하시키는 공격 방법을 제안한다. 제안 방법은 입력 라이다의 포인트에 스케일링 공격을 하고자 한다. 스케일링 알고리즘과 크기별 공격 성능 실험을 진행한 결과 평균 77% 이상의 융합 오류를 유발하였다.

목차

요약
ABSTRACT
I. 서론
II. 관련 연구
III. 제안 방법
IV. 실험 및 실험 결과
V. 고찰
VI. 결론
References

참고문헌 (21)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-088524765