메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Jun-Hyeon Choi (Sungkyunkwan University) Sang-Hyeon Bae (Sungkyunkwan University) Ye-Chan An (Sungkyunkwan University) Tae-Yong Kuc (Sungkyunkwan University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2023
발행연도
2023.10
수록면
1,286 - 1,291 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this paper, we proposes the development of a novel navigation system for Autonomous Mobile Robots (AMR) in a logistics environment. AMR aim to provide a more flexible and innovative solution compare with traditional Automated Guided Vehicle (AGV) systems, in order to alleviate the inconvenience of line reconfiguration due to environmental changes. AMR equipped with various functionalities and sensors play a significant role in automating logistics and factory operations.The proposed navigation system includes methods for optimal path planning for single or multiple robots in a warehouse environment, improved localization techniques, and obstacle detection methods. By utilizing three maps, the system plans specialized paths for logistics warehouses, and addresses the limitations of conventional probability-based localization methods by utilizing semantic features extracted from the radar sensor for position recognition. Furthermore, this system incorporates LIDAR sensors for obstacle detection and ensures that the robot stops when obstacles are detected within the predicted area based on size and speed.The implementation of this navigation system enhances the autonomy and efficiency of AMR in logistics environments, improving position measurement, path planning, and obstacle detection capabilities. It offers the potential for increased productivity and cost savings in automated logistics system operations.

목차

Abstract
1. INTRODUCTION
2. MAPPING
3. PLANNING
4. LOCALIZATION
5. OBSTACLE RECOGNITION
6. EXPERIMENT
7. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-088265690