메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Arshman Amer Awan (Institute of Space Technology) Osama Aftab Usman (Institute of Space Technology) Muhammad Zubair Khan (Institute of Space Technology) Usman Ghafoor (Institute of Space Technology) M. Raheel Bhutta (University of UTAH Asia Campus)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2023
발행연도
2023.10
수록면
1,174 - 1,179 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
To achieve optimal efficiency and increased productivity, the utilization of intelligent automated machines has become crucial in performing various operations and tasks. This research paper explores the fundamental differences between traditional automation and autonomous robotic assembly, focusing on the approaches employed in locating, acquiring, manipulating, aligning, and assembling parts. Recent advancements in processing power and sensor capabilities have opened up new opportunities for achieving autonomy and flexibility at affordable costs. Autonomous robotic manipulators offer a high degree of flexibility and capability to handle system uncertainties, unknowns, and exceptions. Furthermore, mobile manipulation, which involves coordinated motion of the robot"s base and joints, enables precise control over the arm"s motion. This paper describes the kinematic analysis using RoboAnalyzer, to examine the behavior of robotic arm Denavit-Hartenberg parameters are used for forward kinematics to calculate final transformation matrix of end effector which shows the position of gripper, also the torque calculation has done in fully extended arm position, so that the maximum torque applied on each servo joint can be calculated. CAD model and assembly for 6 DOF robotic arm was carried out in Solidworks.

목차

Abstract
1. INTRODUCTION
2. PROPOSED METHODOLOGY
3. CONCLUSION
4. ACKNOWLEDGMENT
5. REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-088265538