메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
ChenXiao Li (Inha University) SeungWon Ham (Inha University) SeungHo Park (Inha University) MinHo Lee (Inha University) JinWoo Lee (Inha University) Jaehyun Ahn (Inha University) Burford Furman (San José State University) Chul-Hee Lee (Inha University)
저널정보
유공압건설기계학회 드라이브·컨트롤 드라이브·컨트롤 Vol.22 No.1
발행연도
2025.3
수록면
16 - 26 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This study proposes an automated crane system to enhance container handling efficiency in port operations. The system integrates a YOLOv10-based recognition module, a six-degree-of-freedom robotic arm, and a custom-designed gripper, thereby achieving high automation and reliability. The efficacy of the YOLOv10 model, which has been optimized through the application of transfer learning, has been demonstrated to be robust under complex conditions, as evidenced by its mean average precision (mAP@50) of 98% and a recall rate of 96%. A coordinate transformation mechanism ensures precise alignment between the robotic arm and target containers.
Experimental findings demonstrated the system's capacity to rectify positioning errors within a range of 0-13mm, attaining a 93.5% success rate across 200 trials. However, errors exceeding 13mm led to operational failures, underscoring the necessity for further optimization in these areas. This study proposes a comprehensive solution for automated container handling, integrating visual detection, spatial transformation, and robotic control. The outcomes substantiate the system's reliability and efficiency, thereby establishing a foundation for the advancement of intelligent port technologies and automation.

목차

Abstract
1. Introduction
2. Automation System Design
3. Spatial coordinate transformation Design
4. Experimental device design
5. Recognition and YOLOv10 Model Training
6. Experimental results
7. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-25-02-092485767