메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Youngjun Joo (LG Electronics) Hanbyeol Kim (LG Electronics) Jonghun Park (LG Electronics) Changeui Shin (LG Electronics) Hoseong Kwak (LG Electronics) Joonkeol Song (LG Electronics) Chulho Shin (LG Electronics)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2021
발행연도
2021.10
수록면
1,747 - 1,751 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper presents a sensorless force control algorithm based on external force estimation technique for robotic manipulator systems. Typically, six-axis force torque or joint torque sensors are employed to measure external force induced by contact between the robot and the environment. However, attachment of such sensors to robotic manipulator systems is too costly and requires additional space in the body of a robotic manipulator. Our choice for solving this problem is to employ the momentum observer, which is one of the well-known external force estimation techniques for estimating external force, and the estimated external force is used as feedback for force control without using costly force torque or joint torque sensors. Stability of a closed-loop system where contact is in place and force control performance in such conditions have been analyzed based on the singular perturbation theory. In addition, a design guideline for applying the momentum observer approach we proposed has been put together according to the Lyapunov analysis method. We validate performance of the proposed algorithm using experiments with a six-axis industrial robotic manipulator (Robostar RA004). The experimental results show that the end-effector of the manipulator exerts desired force to contact object with error margin of 3:6%.

목차

Abstract
1. INTRODUCTION
2. FORCE CONTROL FOR MECHANICAL SYSTEMS
3. EXPERIMENTS FOR ROBOT MANIPULATOR
4. CONCLUSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0