메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Yundi Chu (Hohai University) Xujun Luo (Hohai University) Shixi Hou (Hohai University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2023
발행연도
2023.10
수록면
815 - 820 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
In this article, for a series of nonlinear dynamic systems, a novel neuroadaptive controller which base on dualloop recursive fuzzy neural network (DRFNN) is designed. Different from the traditional fuzzy neural network (FNN) in which parameters need to be preset and tested several times, owing to the existence of adaptive mechanism, the center vector and the base width in DRFNN do not need to be preset and debugged again and again, but are set randomly and they will eventually stabilize at the optimal values. In addition, thanks to the recursive structure, the DRFNN can store more useful information and process time varying signals effectively, consequently, the DRFNN possesses more accurate
approximation ability and stronger robustness than fuzzy neural network. Then DRFNN and global sliding mode control are combined to design the controller, and the stability of the closed-loop system is proved strictly according to Lyapunov stability criterion. Furthermore, in order to verify the practicability and effectiveness of the proposed scheme, the APF is selected as the research object for simulation. The results demonstrate that the developed control scheme has superior performance. In the end, some comparisons among RFNN and the proposed DRFNN are conducted to suggest that the DRFNN possesses more superior properties.

목차

Abstract
1. INTRODUCTION
2. DUAL-LOOP RECURSIVE FUZZY NEURAL NETWORK (DRFNN)
3. PROPOSED CONTROLLER
4. SIMULATION STUDY FOR ACTIVE POWER FILTER
5. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-088264951