메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
최종원 (고려대학교) 김성범 (고려대학교)
저널정보
대한산업공학회 대한산업공학회 추계학술대회 논문집 2023년 대한산업공학회 추계학술대회
발행연도
2023.11
수록면
2,460 - 2,481 (22page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The semiconductor industry, driven by technological advancements, is continuously undergoing process miniaturization. This miniaturization has led to an increased complexity in the wafer fabrication process and equipment. Inevitably, this change is accompanied by a rise in defect rates, and the traditional manual analysis methods for these defects possess several limitations. Notably, the defect analysis process is time-consuming and heavily relies on the expertise of the workers, making it challenging to achieve consistent analysis results. In modern semiconductor manufacturing sites, a vast amount of sensor data is being generated in real-time from various equipment. This data encapsulates information on the wafer"s condition, the progress of the process, and the operating conditions of the equipment. If used efficiently, these data could significantly enhance the accuracy and efficiency of defect analysis. In this study, we propose a deep learning model that leverages sensor data generated within multi-processes. The proposed method is designed to automatically classify the defect status of wafers and interpret the causes of these defects. Using the sensor data from two process equipment in semiconductor manufacturing, we achieve better classification performance than other existing methods. Through the interpretation of the classification results, we can identify the sensors and equipment that significantly impact the classification results. The proposed methodology is expected to significantly reduce the time and reliance on engineers for defect analysis, thus greatly improving production efficiency.

목차

Abstract
1. 서론
2. 배경 방법론
3. 제안 방법론
4. 실험 결과
5. 결론
참고 문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-088370365