메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
최인호 (서울대학교) 정동휘 (서울대학교) 김성우 (서울대학교)
저널정보
대한전자공학회 대한전자공학회 학술대회 2021년도 대한전자공학회 하계종합학술대회 논문집
발행연도
2021.6
수록면
123 - 128 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Existing semiconductor defect inspection has relied on measurement between process steps or destruction inspection, in which only some wafers can be inspected according to production efficiency issues.
However, due to an issue that leads to a large loss of some wafers that were not inspected, it was possible to monitor the value of a facility sensor capable of inspecting the entire wafer.
In recent quality control, this sensor data is also added along with the existing inspection and is managed through statistical verification.
In addition, verification methods such as SPC, EWMA, APC, FDC, and VM are used to verify that specifications are satisfied with real-time time series values without considering the order of time series sensor values.
As defects increase as the process refines, the sensor value trend fluctuates according to the time series even within the set specification of the sensor value.
At this time, there is a need for a method capable of detecting an abnormal pattern by calculating the time-series correlation of the pattern for each wafer.
Pre-treatment was necessary for this method, but until now, only manual verification, which is verified after manual monitoring by humans, has been in progress.
Therefore, in this study, in order to improve the shortcomings of these existing verification methods, the problem of data transmission timing was solved by using the similarity measurement method and the deep learning method by using the time series pattern data collected in a specific process.
Several examples of real-time time-series abnormal pattern detection verified in the process were included.
In addition, through the process data with little bad label data, we compared the performance of various methods and proposed an optimal method that can be applied.

목차

Abstract
I. 서론
II. 관련 연구
Ⅲ. 문제 정의
Ⅳ. 문제 접근 및 해결 방법
Ⅴ. 실험 및 결과
Ⅵ. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0