메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Chang-Hun Park (Sungkyunkwan University School of Medicine) Heeyoung Kwon (Masan University)
저널정보
대한임상검사정도관리협회 Journal of Laboratory Medicine And Quality Assurance Laboratory Medicine and Quality Assurance 제45권 제1호
발행연도
2023.3
수록면
18 - 24 (7page)
DOI
10.15263/jlmqa.2023.45.1.18

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Background: With the introduction of digital cell image analyzer and artificial intelligence, automatic cell image identification and disease diagnosis has become possible. However, an inappropriately stained image can cause errors in cell recognition in digital cell imaging. In this study, we aimed to determine the quality index for the quality control of the staining method. Methods: The differences (calculated values, VALCELL) in cell percentages (image counts [IMGCELL] and complete blood count with differential count [DIFFCELL]) between the image analyzer and the automatic hematology analyzer were calculated from the appropriately stained smears. Then, a Levey-Jennings control chart was plotted using the VALCELL and the inappropriately stained smears were evaluated against the Levey-Jennings control chart. Results: The allowable ranges from the Levey-Jennings control charts for neutrophils and lymphocytes were –5.50 to 10.46 and –11.56 to 6.92, respectively. From the Levey-Jennings control charts, 33.3% (5/15) were outside the allowable ranges and considered inappropriately stained. Conclusions: The differences in the cell percentages between the image analyzer and the automatic hematology analyzer may be used to detect inappropriately stained smears.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0