메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
연세대학교 의과대학 Yonsei Medical Journal Yonsei Medical Journal 제60권 제2호
발행연도
2019.1
수록면
158 - 162 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Purpose: Trastuzumab is an effective treatment for human epidermal growth factor receptor 2 (HER2)-amplified breast cancers. We sought to develop a simple protocol for HER2 image analysis of breast cancer specimens. Materials and Methods: In a preliminary test, we found that at least 1000 tumor cells need to be examined in the most stronglystained areas. Next, we evaluated the clinical usefulness of this established protocol of image analysis in 555 breast cancer patients. Results of the HER2 immunohistochemical (IHC) staining were compared between manual scoring and image analysis. Results: The HER2 IHC results obtained by the image analysis method correlated well with those obtained by the manual scoringmethod (Cohen’s kappa=0.830). Using the HER2 silver in situ hybridization (SISH) results as a gold standard, sensitivity valueswere 72.1% for manual scoring and 74.0% for image analysis; specificity values were 96.2% for manual scoring and 94.7% for imageanalysis; and accuracy values were 91.7% for manual scoring and 90.8% for image analysis. McNemar’s test was applied to theresults, and there were no statistically significant differences in sensitivity and specificity between the positive (p=0.688) and negative(p=0.118) SISH groups. Conclusion: HER2 image analysis results were similar to those obtained via the manual scoring method, indicating that the useof image analysis can reduce assessment time and effort. We suggest that image analysis-based evaluation of 1000 tumor cells inthe most strongly IHC-stained area, regardless of stroma content, is sufficient for determining HER2 expression levels in breastcancer specimens.

목차

등록된 정보가 없습니다.

참고문헌 (8)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0