메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
구본우 (우송대학교) 황규덕 (metasky) 조일현 (상명대학교 디지털콘텐츠과) 안성혜 (상명대학교 디지털콘텐츠과)
저널정보
한국컴퓨터게임학회 한국컴퓨터게임학회논문지 한국컴퓨터게임학회논문지 제36권 제2호
발행연도
2023.6
수록면
13 - 21 (9page)
DOI
10.22819/kscg.2023.36.2.002

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
VR and AR are not technologies that are difficult for the public to access, but can be experienced and used with a single personal smartphone. Recently, AR content using various sensors of these personal smartphones has been developed and serviced. As the demand for AR content grew, so did the demand for software education. However, although SW education has become active around Python languages that are easy for non-majors to learn, Python cannot be actively used in AR content development. AR content is actively used not only in the technical field but also in the interactive art field. Recently, interactive artists have been developing and exhibiting works using artificial intelligence using Python. SW education through Python is not only necessary for employment in the SW field, but has also become necessary education in the art field. This paper proposes a network-based AR framework using Python and Unity 3D Engine for AR content development education. The proposed AR framework accesses the camera of a personal smartphone from a web-based browser, transmits camera information to the Main Server, and analyzes Mark on Python. It renders 3D objects in Unity 3D Engine according to Mark information, synthesizes camera informatization, and renders them on personal smartphone screens with MJPEG streaming. The AR framework proposed in this paper reflects the requirements of SW education platforms and non-face-to-face education platforms, and is expected to lower the technical limitations required for various challenges of interactive artists..

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0