메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Thi Nguyen Nhung (Yonsei University Wonju College of Medicine) Thi Nguyen Tuyet (Yonsei University Wonju College of Medicine) Nguyen Ha Thu (Yonsei University Wonju College of Medicine) Lee Ji-Min (Kyungpook National University Hospital) Kim Min-Ji (Kyungpook National University Hospital) Qi Xu-Feng (Jinan University) Cha Seung-Kuy (Yonsei University Wonju College of Medicine) Lee In-Kyu (Kyungpook National University Hospital) Park Kyu-Sang (Yonsei University Wonju College of Medicine)
저널정보
대한생화학·분자생물학회 Experimental and Molecular Medicine Experimental and Molecular Medicine 제55권
발행연도
2023.3
수록면
532 - 540 (9page)
DOI
10.1038/s12276-023-00950-0

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Vascular calcification is a serious complication of hyperphosphatemia that causes cardiovascular morbidity and mortality. Previous studies have reported that plasmalemmal phosphate (Pi) transporters, such as PiT-1/2, mediate depolarization, Ca2+ influx, oxidative stress, and calcific changes in vascular smooth muscle cells (VSMCs). However, the pathogenic mechanism of mitochondrial Pi uptake in vascular calcification associated with hyperphosphatemia has not been elucidated. We demonstrated that the phosphate carrier (PiC) is the dominant mitochondrial Pi transporter responsible for high Pi-induced superoxide generation, osteogenic gene upregulation, and calcific changes in primary VSMCs isolated from rat aortas. Notably, acute incubation with high Pi markedly increased the protein abundance of PiC via ERK1/2- and mTOR-dependent translational upregulation. Genetic suppression of PiC prevented Pi-induced ERK1/2 activation, superoxide production, osteogenic differentiation, and vascular calcification of VSMCs in vitro and aortic rings ex vivo. Pharmacological inhibition of mitochondrial Pi transport using butyl malonate (BMA) or mersalyl abolished all pathologic changes involved in high Pi-induced vascular calcification. BMA or mersalyl also effectively prevented osteogenic gene upregulation and calcification of aortas from 5/6 subtotal nephrectomized mice fed a high-Pi diet. Our results suggest that mitochondrial Pi uptake via PiC is a critical molecular mechanism mediating mitochondrial superoxide generation and pathogenic calcific changes, which could be a novel therapeutic target for treating vascular calcification associated with hyperphosphatemia.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0