메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
박철훈 (전남대학교) 최현덕 (전남대학교)
저널정보
제어로봇시스템학회 제어로봇시스템학회 논문지 제어로봇시스템학회 논문지 제29권 제11호
발행연도
2023.11
수록면
928 - 935 (8page)
DOI
10.5302/J.ICROS.2023.23.0119

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Estimating a high-quality depth map from a single RGB image is a challenging task due to its ill-posed nature. Recently, two dominant trends in computer vision have been the subject of extensive research: attention mechanisms and multi-layer perceptron (MLP)-based vision models. Attention mechanisms, especially multi-head attention (MHA), have demonstrated significant improvements in depth estimation. MHA excels in capturing long-distance information and pixel relationships, yet its complexity quadratically increases with spatial resolution. Consequently, applying MHA to unmanned aerial vehicles with limited hardware resources is infeasible. In contrast, MLP-based vision models offer faster inference due to their linear computational complexity concerning spatial resolution. However, the inherent weakness of the MLP’s inductive bias can hinder generalization without a substantial amount of data. Moreover, the absence of location-dependent local dependencies can hinder the precise estimation of locally detailed depth maps. To address these challenges, this study introduces a novel module called EPsMLP (Enhanced Parallel sparse-MLP), which consists of three parallel branches, including sparse-MLP, local sparse attention, and channel attention. This module can capture global and local dependencies while benefiting from the inductive bias on locality. Furthermore, multi-scale convolutions are used to extract context at various scales for diverse objects. The architecture adopts an encoder-decoder-based structure, incorporating a pre-trained DenseNet-121 encoder. Experimental evaluations were conducted using the NYU-Depth-V2 and KITTI datasets, which are commonly used in monocular depth estimation. The extensive results demonstrate that our network is more efficient and effective than previously proposed methods.

목차

Abstract
I. 서론
II. 관련 연구
III. 단안 이미지 깊이 추정 신경망
IV. 실험 및 결과
IV. 결론 및 향후 연구계획
REFERENCES

참고문헌 (27)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-088336185