메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Gyu-Wan Choe (GIANTSTEP Inc)
저널정보
중앙대학교 영상콘텐츠융합연구소 TECHART: Journal of Arts and Imaging Science TECHART: Journal of Arts and Imaging Science Vol.10 No.3
발행연도
2023.10
수록면
1 - 7 (7page)
DOI
10.15323/techart.2023.10.10.3.1

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In today"s digital landscape, transmedia strategies are becoming increasingly essential for extending and sustaining intellectual property (IP) in digital content. These strategies have a significant impact on content longevity and revenue, owing to the widespread use of mobile devices and diverse digital media. Beyond digital media, storytelling in physical spaces is evolving. Amusement parks such as Disneyland and Universal Studios thrive by immersing visitors in unified storytelling and leveraging advanced technologies. Traditional mechanically complex attractions have transitioned to innovative technologies, such as projection-based quasi-holograms, spurring the success of digital theme parks. For instance, Moment Factory"s "Lumina Night Walk" transforms natural settings with dynamic lighting for unique experiences. To maximize immersion, attractions frequently use walkthrough formats with spaces aligned with the narrative. Non-linear storytelling adapts to the audience"s actions in site-specific performances like Extreme Punch Trunk"s "Slip No More," actively involving them. This method transforms spectators into participants and achieves a high level of immersion. Expanding these techniques to physical spaces and applying transmedia storytelling can enhance content immersion while leveraging intellectual property.

목차

Abstract
1. Introduction
2. Theoretical Background
3. Analysis of immersive elements of experiential exhibitions
4. Application of content IP for immersive experience exhibitions
5. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-088336210