메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Changwon Baek (Korea Institute of Science and Technology) Jiho Kang (Korea University) SangSoo Choi (Korea Institute of Science and Technology)
저널정보
한국지능시스템학회 INTERNATIONAL JOURNAL of FUZZY LOGIC and INTELLIGENT SYSTEMS INTERNATIONAL JOURNAL of FUZZY LOGIC and INTELLIGENT SYSTEMS Vol.23 No.3
발행연도
2023.9
수록면
244 - 258 (15page)
DOI
10.5391/IJFIS.2023.23.3.244

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Online news articles and comments play a vital role in shaping public opinion. Numerous studies have conducted online opinion analyses using these as raw data. Bidirectional encoder representations from transformer (BERT)-based sentiment analysis of public opinion have recently attracted significant attention. However, owing to its limited linguistic versatility and low accuracy in domains with insufficient learning data, the application of BERT to Korean is challenging. Conventional public opinion analysis focuses on term frequency; hence, low-frequency words are likely to be excluded because their importance is underestimated. This study aimed to address these issues and facilitate the analysis of public opinion regarding Korean news articles and comments. We propose a method for analyzing public opinion using word2vec to increase the word-frequency-centered analytical limit in conjunction with KoBERT, which is optimized for Korean language by improving BERT. Naver news articles and comments were analyzed using a sentiment classification model developed on the KoBERT framework. The experiment demonstrated a sentiment classification accuracy of over 90%. Thus, it yields faster and more precise results than conventional methods. Words with a low frequency of occurrence, but high relevance, can be identified using word2vec.

목차

Abstract
1. Introduction
2. Literature Review
3. Data Collection and Analysis
4. Results
5. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0102-2023-003-002056196