메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Jun-Hyun Oh (Sangmyung University) Sang-Soon Kim (Dankook University) Mi-Kyung Park (Kyungpook National University) Young-Duk Kim (DGIST)
저널정보
한국지능정보시스템학회 한국지능정보시스템학회 학술대회논문집 2022년 ICEC-한국지능정보시스템학회 공동춘계학술대회 논문집
발행연도
2022.6
수록면
581 - 584 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Word2Vec algorithm is one of the most widely used models of word embeddings, searching for word-to-word associations and representing word data in vector numbers. The goal of this study was to investigate the efficacy of Word2Vec algorithm as a rapid and accurate method for determining “the same imported product from the same company” for imported food items in South Korea. The accuracy of Word2Vec algorithm was determined by correlating the cosine similarity to the manually determined manufacturing process, and the accuracy changes from the Word2Vec algorithm were also investigated by using the weights selected from critical control points (CCPs) of the process. The Word2Vec algorithm determined the manufacturing processes as “same process” with the accuracy of greater than 70%, when the cut-off value cosine similarity is set as 0.85. When the cosine similarity is less than 0.85, the user weight was applied. The accuracy was dependent upon the CCPs; when the CCPs are shared (or same) in the processes, the similarity increased, however when the CCPs were missed or not shared (or different), the similarity decreased.

목차

Abstract
Introduction
Methods
Results
Conclusions
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0