메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
박태욱 (울산과학기술원) 신희중 (울산과학기술원) 오현동 (울산과학기술원)
저널정보
제어로봇시스템학회 제어로봇시스템학회 논문지 제어로봇시스템학회 논문지 제29권 제8호
발행연도
2023.8
수록면
628 - 635 (8page)
DOI
10.5302/J.ICROS.2023.23.0054

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Fiducial markers are used to localize camera positions and are widely employed in various fields where fast and highly accurate positioning is required, including AR (Augmented Reality), VR (Virtual Reality), PCB (Printed Circuit Board) design factories, and robot localization research. Over the past 20 years, many fiducial marker designs and detection algorithms have been proposed to improve detection rates, broaden the same marker family, or save computational resources. However, most of these algorithms work well in constrained environments, such as well-lit conditions, minimal motion blur, or no shadows. These limitations can be addressed by using learning-based methods, but they often suffer from high computational loads or the need for collecting training datasets. To overcome these limitations, we introduce a novel fiducial marker detection algorithm along with a neural network compression. By using a feature detection network with a simple circular-shape based fiducial marker, training datasets can be fully synthesized considering real-world noise without the effort of collecting and labeling datasets. Since many fiducial marker applications run on computationally constrained embedded systems, TD (Tensor Decomposition) and QAT (Quantization Aware Training) are applied to the neural network to reduce the number of parameters and improve the inference speed of the network. We demonstrate that our neural network compression approach preserves overall performance while reducing network parameters by 55.48% and accelerating inference speed by 569% on an NVIDIA Jetson Xavier NX. Furthermore, we validate our methods by testing them on real-world images taken by a flying drone.

목차

Abstract
Ⅰ. 서론
Ⅱ. 딥러닝 기반 마커 인식
Ⅲ. 인공 신경망 경량화
Ⅳ. 결과
Ⅴ. 결론
REFERENCES

참고문헌 (13)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0102-2023-003-001921332