메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Oguz Kedilioglu (Friedrich-Alexander-Universität Erlangen-N¨urnberg (FAU)) Tomás Marcelo Bocco (Politecnico di Torino) Martin Landesberger (Technical University of Munich) Alessandro Rizzo (Politecnico di Torino) Jörg Franke (Friedrich-Alexander-Universität Erlangen-N¨urnberg (FAU))
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2021
발행연도
2021.10
수록면
878 - 881 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper presents a novel fiducial marker type called ArUcoE. It is obtained from a standard ArUco marker by enhancing it with a chessboard-like pattern. With our approach the pose estimation accuracy of any ArUco marker can easily be increased. Further methods to increase the accuracy are analyzed. By applying a subpixel algorithm to the corner regions we are able to locate the corner points within a pixel and overcome the restriction of pixel-level accuracy. A deep-learning-based super-resolution method is used to artificially increase the pixel density in the same regions. Additionally, the effect of using a single and a stereo camera setup on the accuracy is shown.

목차

Abstract
1. INTRODUCTION
2. METHODOLOGY
3. EVALUATION
4. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0