메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Mario A.V. Saucedo (Luleå University of Technology) Akash Patel (Luleå University of Technology) Niklas Dahlquist (Luleå University of Technology) Yifan Bai (Luleå University of Technology) Björn Lindqvist (Luleå University of Technology) Christoforos Kanellakis (Luleå University of Technology) George Nikolakopoulos (Luleå University of Technology)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2024
발행연도
2024.10
수록면
1,212 - 1,217 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Visual servoing plays a crucial role in robotics, spanning across a great spectrum of applications from autonomous cars to aerial manipulation. This article proposes TFMarker, a novel tangible fiducial pattern for enabling camera-assisted guided landing of UAVs by using the visual features from color markers as the main source of information. TFMarker is structured around a 4-point fiducial marker, allowing for accurate, precise, and consistent pose estimation in different environments and lighting conditions, while also offering resilience to motion blur. The presented detection framework is based on a three-step architecture, where the first step uses Gaussian and color filtering in addition to morphological operation in order to generate a robust detection of the markers. The second step uses the Gift Wrapping Algorithm, to organize the same-color markers based on their relative positioning with respect to the off-color marker. Finally, the Perspective-n-Point optimization problem is solved in order to extract the pose (i.e. position and orientation) of the proposed pattern with respect to the vision sensor. The efficacy of the proposed scheme has been extensively validated in indoor and SubT environments for the task of autonomous landing using a custom-made UAV. The experimental results showcase the performance of the proposed method, which presents a better detection rate in both environments while retaining similar accuracy and precision to the baseline approach. For the video of the experimental evaluation please refer to the following link: https://youtu.be/Zh13OObp15Q

목차

Abstract
1. INTRODUCTION
2. RELATED WORK
3. METHODOLOGY
4. EXPERIMENTAL EVALUATION
5. CONCLUSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0