메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Byeong Jun Chae (Yonsei University College of Medicine) Kyung-Seo Lee (Yonsei University College of Medicine) Inhwa Hwan (Yonsei University College of Medicine) Je-Wook Yu (Yonsei University College of Medicine)
저널정보
대한면역학회 Immune Network Immune Network Vol.23 No.3
발행연도
2023.6
수록면
16 - 32 (17page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Inflammation is a series of host defense processes in response to microbial infection and tissue injury. Inflammatory processes frequently cause extracellular acidification in the inflamed region through increased glycolysis and lactate secretion. Therefore, the immune cells infiltrating the inflamed region encounter an acidic microenvironment. Extracellular acidosis can modulate the innate immune response of macrophages; however, its role for inflammasome signaling still remains elusive. In the present study, we demonstrated that macrophages exposed to an acidic microenvironment exhibited enhanced caspase-1 processing and IL-1β secretion compared with those under physiological pH. Moreover, exposure to an acidic pH increased the ability of macrophages to assemble the NLR family pyrin domain containing 3 (NLRP3) inflammasome in response to an NLRP3 agonist. This acidosis-mediated augmentation of NLRP3 inflammasome activation occurred in bone marrow-derived macrophages but not in bone marrow-derived neutrophils. Notably, exposure to an acidic environment caused a reduction in the intracellular pH of macrophages but not neutrophils. Concordantly, macrophages, but not neutrophils, exhibited NLRP3 agonist-mediated translocation of chloride intracellular channel protein 1 (CLIC1) into their plasma membranes under an acidic microenvironment. Collectively, our results demonstrate that extracellular acidosis during inflammation can increase the sensitivity of NLRP3 inflammasome formation and activation in a CLIC1-dependent manner. Thus, CLIC1 may be a potential therapeutic target for NLRP3 inflammasome-mediated pathological conditions.

목차

ABSTRACT
INTRODUCTION
MATERIALS AND METHODS
RESULTS
DISCUSSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0102-2023-517-001744138