메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김봉수 (인하대학교) 이경재 (성균관대학교)
저널정보
한국통계학회 응용통계연구 응용통계연구 제35권 제2호
발행연도
2022.4
수록면
285 - 298 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
연속 수축 사전분포는 spike and slab 사전분포와 더불어, 희박 회귀계수 벡터 또는 공분산 행렬에 대한 베이지안 추론을 위해 널리 사용되고 있다. 특히 고차원 상황에서, 연속 수축 사전분포는 spike and slab 사전분포에 비해 매우 작은 모수공간을 가짐으로써 계산적인 이점을 가진다. 하지만 연속 수축 사전분포는 정확히 0인 값을 생성하지 않기 때문에, 이를 이용한 변수 선택이 자연스럽지 않다는 문제가 있다. 비록 연속 수축 사전분포에 기반한 변수 선택 방법들이 개발되어 있기는 하지만, 이들에 대한 포괄적인 비교연구는 거의 진행되어 있지 않다. 본 논문에서는, 연속 수축 사전분포에 기반한 두 가지의 변수 선택 방법들을 비교하려 한다. 첫 번째 방법은 신용구간에 기반한 변수 선택, 두 번째 방법은 최근 Li와 Pati (2017)가 개발한 sequential 2-means 알고리듬이다. 두 방법에 대한 간략한 소개를 한 뒤, 다양한 모의실험 상황에서 자료를 생성하여 두 방법들의 성능을 비교하였다. 끝으로, 모의실험으로부터 발견한 몇 가지 사실들을 기술하고, 이로부터 몇 가지 제안을 하며 논문을 마치려 한다.

목차

Abstract
1. 서론
2. 공분산 행렬에 대한 사전분포 및 변수 선택
3. 모의실험을 통한 비교연구
4. 결론 및 논의
References
요약

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-310-001441133