메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
신주원 (인하대학교) 이경재 (인하대학교)
저널정보
한국통계학회 응용통계연구 응용통계연구 제34권 제3호
발행연도
2021.6
수록면
491 - 505 (15page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
본 연구에서는, 고차원상황(p≫n)에서의 회귀분석 모형을 고려하여 다양한 베이지안 회귀분석 방법들을 비교하였다. Spike and slab 사전분포는 고차원 베이지안 회귀분석에서 가장 많이 사용되는 사전분포 중 하나이지만, 탐험해야 하는 모형 공간이 너무 크기 때문에 유한 표본에서 좋지 않은 성능을 보일 수 있다는 문제가 있다. 이에 대한 대안으로, horseshoe 사전분포를 비롯한 다양한 연속 수축사전분포들이 제안되어 사용되고 있다. 비록 위 사전분포들 각각에 대해서는 많은 연구들이 진행되고 있지만, 이들에 대한 포괄적인 비교연구는 매우 드물게 진행되고 있다. 따라서 본 연구에서는, spike and slab 사전분포와 다양한 연속수축사전분포들을 다양한 상황에서 비교하는 연구를 진행하였다. 각 방법의 성능은 회귀계수 추정 측면과 변수선택 측면을 나누어 비교하였다. 최종적으로, 본 연구에서 진행된 시뮬레이션 연구에 기반하여, 사용시 몇 가지 주의점과 제안들을 제시하였다.

목차

Abstract
1. 서론
2. 고차원 회귀 모형
3. 시뮬레이션 자료를 통한 비교연구
4. 결론
References
요약

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0