메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이민혜 (숙명여자대학교) 노호석 (숙명여자대학교)
저널정보
한국통계학회 응용통계연구 응용통계연구 제32권 제5호
발행연도
2019.10
수록면
671 - 681 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
최근에 부정맥 환자가 증가하면서 머신러닝을 이용한 부정맥을 예측하는 연구가 활발하게 진행되고 있다. 기존의 많은 연구들은 특정한 시점의 RR 간격 데이터에서 추출한 특징변수 다변량 데이터에 기반하여 부정맥을 예측하였다. 본 연구에서는 심장 상태가 시간에 따라 변해가는 패턴도 부정맥 예측에 중요한 정보가 될 수 있다고 생각하여 일정한 시간 간격을 두고 특징변수의 다변량 벡터를 추출하여 쌓음으써 얻어지는 다변량 시계열 데이터로 부정맥을 예측하는 것의 유용성에 대해 살펴보았다. 1-Nearest Neighbor 방법과 그것을 앙상블(ensemble)한 learner를 중심으로 비교했을 경우 시계열의 특징을 고려한 적절한 시계열 거리함수를 선택하여 시계열 정보를 활용한 다변량 시계열 데이터 기반 방법의 분류 성능이 더 좋게 나오는 것을 확인하였다.

목차

Abstract
1. 서론
2. 심박동 데이터 및 특징변수 설명
3. 심실빈맥 예측을 위한 데이터 생성
4. 분류 성능 비교
5. 결론 및 추후 연구방향
References
요약

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-310-001440601