메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Yeoyoung Cho (KAIST) Changryong Baek (Sungkyunkwan University)
저널정보
한국통계학회 CSAM(Communications for Statistical Applications and Methods) CSAM(Communications for Statistical Applications and Methods) 제26권 제6호
발행연도
2019.11
수록면
611 - 622 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper considers the estimation of the long memory parameter in nonparametric regression with strongly correlated errors. The key idea is to minimize a unified mean squared error of long memory parameter to select both kernel bandwidth and the number of frequencies used in exact local Whittle estimation. A unified mean squared error framework is more natural because it provides both goodness of fit and measure of strong dependence. The block bootstrap is applied to evaluate the mean squared error. Finite sample performance using Monte Carlo simulations shows the closest performance to the oracle. The proposed method outperforms existing methods especially when dependency and sample size increase. The proposed method is also illustreated to the volatility of exchange rate between Korean Won for US dollar.

목차

Abstract
1. Introduction
2. Description of the proposed method
3. Monte Carlo simulations study
4. Real data application
5. Conclusions
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-310-001441759