메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Xing Li (University of Science and Technology of China) Panpan Zhang (University of Pennsylvania) Qunqiang Feng (University of Science and Technology of China)
저널정보
한국통계학회 CSAM(Communications for Statistical Applications and Methods) CSAM(Communications for Statistical Applications and Methods) 제29권 제1호
발행연도
2022.1
수록면
103 - 125 (23page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this paper, we analyze the time series data of the case and death counts of COVID-19 that broke out in China in December, 2019. The study period is during the lockdown of Wuhan. We exploit functional data analysis methods to analyze the collected time series data. The analysis is divided into three parts. First, the functional principal component analysis is conducted to investigate the modes of variation. Second, we carry out the functional canonical correlation analysis to explore the relationship between confirmed and death cases. Finally, we utilize a clustering method based on the Expectation-Maximization (EM) algorithm to run the cluster analysis on the counts of confirmed cases, where the number of clusters is determined via a cross-validation approach. Besides, we compare the clustering results with some migration data available to the public.

목차

Abstract
1. Introduction
2. Data description and validation
3. Methodologies
4. Results
5. Discussions
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-310-001432798