메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Luo Xu (Chongqing University) Zhirui Guo (Chongqing University) Xiao Liu (Chongqing University)
저널정보
한국유전학회 Genes & Genomics Genes & Genomics Vol.42 No.1
발행연도
2020.1
수록면
97 - 106 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Background Rapid identification of new essential genes is necessary to understand biological mechanisms and identify potential targets for antimicrobial drugs. Many computational methods have been proposed. Objectives To construct an essential genes classifier which satisfies more different organisms, and to study the redundancy of features used in the prediction of essential genes. Methods We designed a 57-12-1 artificial neural network model to predict the essential genes of 31 prokaryotic genomes. Four methods including self-predictions of each organism, the leave-one-genome-out method, predicting all by one organism, and self-predictions of all organisms were applied to assess the predictive performance. Additionally, the 57 features used in the artificial neural network model were analyzed by weighted principal component analysis to screen the key features strongly related to the essentiality of genes. Results Our results compared with previous researches indicate that our models had better generalizability. Furthermore, this method reduced the features to 29 while maintaining stable prediction performance overall, suggesting that some features are redundant for gene essentiality, and the screened features contained more important biological information for gene essentiality. Conclusion This study showed the effectiveness and generalizability of our artificial neural network model. In addition, the screened features could be used as key features in computational analysis and biological experiments.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0